137 research outputs found

    Cloning a Qutrit

    Full text link
    We investigate several classes of state-dependent quantum cloners for three-level systems. These cloners optimally duplicate some of the four maximally-conjugate bases with an equal fidelity, thereby extending the phase-covariant qubit cloner to qutrits. Three distinct classes of qutrit cloners can be distinguished, depending on two, three, or four maximally-conjugate bases are cloned as well (the latter case simply corresponds to the universal qutrit cloner). These results apply to symmetric as well as asymmetric cloners, so that the balance between the fidelity of the two clones can also be analyzed.Comment: 14 pages LaTex. To appear in the Journal of Modern Optics for the special issue on "Quantum Information: Theory, Experiment and Perspectives". Proceedings of the ESF Conference, Gdansk, July 10-18, 200

    Continuous-variable entropic uncertainty relations

    Full text link
    Uncertainty relations are central to quantum physics. While they were originally formulated in terms of variances, they have later been successfully expressed with entropies following the advent of Shannon information theory. Here, we review recent results on entropic uncertainty relations involving continuous variables, such as position xx and momentum pp. This includes the generalization to arbitrary (not necessarily canonically-conjugate) variables as well as entropic uncertainty relations that take xx-pp correlations into account and admit all Gaussian pure states as minimum uncertainty states. We emphasize that these continuous-variable uncertainty relations can be conveniently reformulated in terms of entropy power, a central quantity in the information-theoretic description of random signals, which makes a bridge with variance-based uncertainty relations. In this review, we take the quantum optics viewpoint and consider uncertainties on the amplitude and phase quadratures of the electromagnetic field, which are isomorphic to xx and pp, but the formalism applies to all such variables (and linear combinations thereof) regardless of their physical meaning. Then, in the second part of this paper, we move on to new results and introduce a tighter entropic uncertainty relation for two arbitrary vectors of intercommuting continuous variables that take correlations into account. It is proven conditionally on reasonable assumptions. Finally, we present some conjectures for new entropic uncertainty relations involving more than two continuous variables.Comment: Review paper, 42 pages, 1 figure. We corrected some minor errors in V

    Operational quantum theory without predefined time

    Full text link
    The standard formulation of quantum theory assumes a predefined notion of time. This is a major obstacle in the search for a quantum theory of gravity, where the causal structure of space-time is expected to be dynamical and fundamentally probabilistic in character. Here, we propose a generalized formulation of quantum theory without predefined time or causal structure, building upon a recently introduced operationally time-symmetric approach to quantum theory. The key idea is a novel isomorphism between transformations and states which depends on the symmetry transformation of time reversal. This allows us to express the time-symmetric formulation in a time-neutral form with a clear physical interpretation, and ultimately drop the assumption of time. In the resultant generalized formulation, operations are associated with regions that can be connected in networks with no directionality assumed for the connections, generalizing the standard circuit framework and the process matrix framework for operations without global causal order. The possible events in a given region are described by positive semidefinite operators on a Hilbert space at the boundary, while the connections between regions are described by entangled states that encode a nontrivial symmetry and could be tested in principle. We discuss how the causal structure of space-time could be understood as emergent from properties of the operators on the boundaries of compact space-time regions. The framework is compatible with indefinite causal order, timelike loops, and other acausal structures.Comment: 15 pages, 7 figures, published version (this version covers the second half of the original submission; the first half has been published separately and is available at arXiv:1507.07745

    A No-Go Theorem for Gaussian Quantum Error Correction

    Full text link
    It is proven that Gaussian operations are of no use for protecting Gaussian states against Gaussian errors in quantum communication protocols. Specifically, we introduce a new quantity characterizing any single-mode Gaussian channel, called entanglement degradation, and show that it cannot decrease via Gaussian encoding and decoding operations only. The strength of this no-go theorem is illustrated with some examples of Gaussian channels.Comment: 4 pages, 2 figures, REVTeX

    Exploring pure quantum states with maximally mixed reductions

    Full text link
    We investigate multipartite entanglement for composite quantum systems in a pure state. Using the generalized Bloch representation for n-qubit states, we express the condition that all k-qubit reductions of the whole system are maximally mixed, reflecting maximum bipartite entanglement across all k vs. n-k bipartitions. As a special case, we examine the class of balanced pure states, which are constructed from a subset of the Pauli group P_n that is isomorphic to Z_2^n. This makes a connection with the theory of quantum error-correcting codes and provides bounds on the largest allowed k for fixed n. In particular, the ratio k/n can be lower and upper bounded in the asymptotic regime, implying that there must exist multipartite entangled states with at least k=0.189 n when n→∞n\to \infty. We also analyze symmetric states as another natural class of states with high multipartite entanglement and prove that, surprisingly, they cannot have all maximally mixed k-qubit reductions with k>1. Thus, measured through bipartite entanglement across all bipartitions, symmetric states cannot exhibit large entanglement. However, we show that the permutation symmetry only constrains some components of the generalized Bloch vector, so that very specific patterns in this vector may be allowed even though k>1 is forbidden. This is illustrated numerically for a few symmetric states that maximize geometric entanglement, revealing some interesting structures.Comment: 10 pages, 2 figure

    Adiabatic quantum search algorithm for structured problems

    Full text link
    The study of quantum computation has been motivated by the hope of finding efficient quantum algorithms for solving classically hard problems. In this context, quantum algorithms by local adiabatic evolution have been shown to solve an unstructured search problem with a quadratic speed-up over a classical search, just as Grover's algorithm. In this paper, we study how the structure of the search problem may be exploited to further improve the efficiency of these quantum adiabatic algorithms. We show that by nesting a partial search over a reduced set of variables into a global search, it is possible to devise quantum adiabatic algorithms with a complexity that, although still exponential, grows with a reduced order in the problem size.Comment: 7 pages, 0 figur

    Optimal multicopy asymmetric Gaussian cloning of coherent states

    Get PDF
    We investigate the asymmetric Gaussian cloning of coherent states which produces M copies from N input replicas, such that the fidelity of all copies may be different. We show that the optimal asymmetric Gaussian cloning can be performed with a single phase-insensitive amplifier and an array of beam splitters. We obtain a simple analytical expression characterizing the set of optimal asymmetric Gaussian cloning machines.Comment: 7 pages, 2 figures, RevTeX

    Asymmetric quantum cloning machines in any dimension

    Full text link
    A family of asymmetric cloning machines for NN-dimensional quantum states is introduced. These machines produce two imperfect copies of a single state that emerge from two distinct Heisenberg channels. The tradeoff between the quality of these copies is shown to result from a complementarity akin to Heisenberg uncertainty principle. A no-cloning inequality is derived for isotropic cloners: if πa\pi_a and πb\pi_b are the depolarizing fractions associated with the two copies, the domain in (πa,πb)(\sqrt{\pi_a},\sqrt{\pi_b})-space located inside a particular ellipse representing close-to-perfect cloning is forbidden. More generally, a no-cloning uncertainty relation is discussed, quantifying the impossibility of copying imposed by quantum mechanics. Finally, an asymmetric Pauli cloning machine is defined that makes two approximate copies of a quantum bit, while the input-to-output operation underlying each copy is a (distinct) Pauli channel. The class of symmetric Pauli cloning machines is shown to provide an upper bound on the quantum capacity of the Pauli channel of probabilities pxp_x, pyp_y and pzp_z.Comment: 18 pages RevTeX, 3 Postscript figures; new discussion on no-cloning uncertainty relations, several corrections, added reference
    • …
    corecore